Excitation by Axon Terminal GABA Spillover in a Sound Localization Circuit.

نویسندگان

  • Catherine J C Weisz
  • Maria E Rubio
  • Richard S Givens
  • Karl Kandler
چکیده

Synapses from neurons of the medial nucleus of the trapezoid body (MNTB) onto neurons of the lateral superior olive (LSO) in the auditory brainstem are glycinergic in maturity, but also GABAergic and glutamatergic in development. The role for this neurotransmitter cotransmission is poorly understood. Here we use electrophysiological recordings in brainstem slices from P3-P21 mice to demonstrate that GABA release evoked from MNTB axons can spill over to neighboring MNTB axons and cause excitation by activating GABAAR. This spillover excitation generates patterns of staggered neurotransmitter release from different MNTB axons resulting in characteristic "doublet" postsynaptic currents in LSO neurons. Postembedding immunogold labeling and electron microscopy provide evidence that GABAARs are localized at MNTB axon terminals. Photolytic uncaging of p-hydroxyphenacyl (pHP) GABA demonstrates backpropagation of GABAAR-mediated depolarizations from MNTB axon terminals to the soma, some hundreds of microns away. These somatic depolarizations enhanced somatic excitability by increasing the probability of action potential generation. GABA spillover excitation between MNTB axon terminals may entrain neighboring MNTB neurons, which may play a role in the developmental refinement of the MNTB-LSO pathway. Axonal spillover excitation persisted beyond the second postnatal week, suggesting that this mechanism may play a role in sound localization, by providing new avenues of communication between MNTB neurons via their distal axonal projections. Significance statement: In this study, a new mechanism of neuronal communication between auditory synapses in the mammalian sound localization pathway is described. Evidence is provided that the inhibitory neurotransmitter GABA can spill over between axon terminals to cause excitation of nearby synapses to further stimulate neurotransmitter release. Excitatory GABA spillover between inhibitory axon terminals may have important implications for the development and refinement of this auditory circuit and may play a role in the ability to precisely localize sound sources.

منابع مشابه

Optogenetics: Control of Brain Using Light

Neuronal cells communicate with each other by producing electrical signals or action potentials (APs). Different ion channels, including Na+, K+ and Ca2+ channels, are involved in generation of AP. Once an AP is generated in the soma, it travels down entire the axon length toward its terminal in a self-generating fashion that ultimately conveys information between neurons in the neural circuit....

متن کامل

Spillover-Mediated Transmission at Inhibitory Synapses Promoted by High Affinity α6 Subunit GABAA Receptors and Glomerular Geometry

synapses. Spillover of transmitter introduces a divergence of information flow superimposed on that produced by divergence in the wiring of synaptic connections. In the case of glutamate, it may also have significant implications for our understanding of the mechanisms Although a modulation of excitatory transmission by Summary GABA spillover has been observed in the hippocampus (Isaacson et al...

متن کامل

Retrograde GABA Signaling Adjusts Sound Localization by Balancing Excitation and Inhibition in the Brainstem

Central processing of acoustic cues is critically dependent on the balance between excitation and inhibition. This balance is particularly important for auditory neurons in the lateral superior olive, because these compare excitatory inputs from one ear and inhibitory inputs from the other ear to compute sound source location. By applying GABA(B) receptor antagonists during sound stimulation in...

متن کامل

Vglut1/vgat Co-expression Sustains Glutamate-gaba Co-release and Is Regulated by Activity

In adult neocortex, VGLUT1, the main glutamate vesicular transporter, and VGAT, the GABA vesicular transporter, are co-expressed in a subset of axon terminals forming both symmetric and asymmetric synapses, where they are sorted to the same vesicles. However, the functional consequence of this co-localization in cortical neurons has not been clarified. Here, we tested the hypothesis that cortic...

متن کامل

Activation of axonal receptors by GABA spillover increases somatic firing.

Axons can be depolarized by ionotropic receptors and transmit subthreshold depolarizations to the soma by passive electrical spread. This raises the possibility that axons and axonal receptors can participate in integration and firing in neurons. Previously, we have shown that exogenous GABA depolarizes cerebellar granule cell axons through local activation of GABA(A) receptors (GABA(A)Rs) and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 36 3  شماره 

صفحات  -

تاریخ انتشار 2016